Computer-generated holography enhances voltage dye fluorescence discrimination in adjacent neuronal structures.
نویسندگان
چکیده
Voltage-sensitive fluorescence indicators enable tracking neuronal electrical signals simultaneously in multiple neurons or neuronal subcompartments difficult to access with patch electrodes. However, efficient widefield epifluorescence detection of rapid voltage fluorescence transients necessitates that imaged cells and structures lie sufficiently far from other labeled structures to avoid contamination from out of focal plane and scattered light. We overcame this limitation by exciting dye fluorescence with one-photon computer-generated holography shapes contoured to axons or dendrites of interest, enabling widefield detection of voltage fluorescence with high spatial specificity. By shaping light onto neighboring axons and dendrites, we observed that dendritic back-propagating action potentials were broader and slowly rising compared with axonal action potentials, differences not measured in the same structures illuminated with a large "pseudowidefield" (pWF) spot of the same excitation density. Shaped illumination trials showed reduced baseline fluorescence, higher baseline noise, and fractional fluorescence transient amplitudes two times greater than trials acquired with pWF illumination of the same regions.
منابع مشابه
Computer Generated Holography with Intensity-Graded Patterns
Computer Generated Holography achieves patterned illumination at the sample plane through phase modulation of the laser beam at the objective back aperture. This is obtained by using liquid crystal-based spatial light modulators (LC-SLMs), which modulate the spatial phase of the incident laser beam. A variety of algorithms is employed to calculate the phase modulation masks addressed to the LC-...
متن کاملFluorescence incoherent color holography.
We present a new imaging method to record multicolor digital holograms from objects emitting fluorescent light. The fluorescent light specific to the emission wavelength of various fluorescent dyes after excitation of three dimensional (3D) objects is recorded on a digital monochrome camera after reflection from a diffractive optical element (DOE). For each wavelength of fluorescent emission, t...
متن کاملHigh-speed, random-access fluorescence microscopy: II. Fast quantitative measurements with voltage-sensitive dyes.
An improved method for making fast quantitative determinations of membrane potential with voltage-sensitive dyes is presented. This method incorporates a high-speed, random-access, laser-scanning scheme (Bullen et al., 1997. Biophys. J. 73:477-491) with simultaneous detection at two emission wavelengths. The basis of this ratiometric approach is the voltage-dependent shift in the emission spect...
متن کاملSubmillisecond optical reporting of membrane potential in situ using a neuronal tracer dye.
A major goal in neuroscience is the development of optical reporters of membrane potential that are easy to use, have limited phototoxicity, and achieve the speed and sensitivity necessary for detection of individual action potentials in single neurons. Here we present a novel, two-component optical approach that attains these goals. By combining DiO, a fluorescent neuronal tracer dye, with dip...
متن کاملSpatially Selective Holographic Photoactivation and Functional Fluorescence Imaging in Freely Behaving Mice with a Fiberscope
Correlating patterned neuronal activity to defined animal behaviors is a core goal in neuroscience. Optogenetics is one large step toward achieving this goal, yet optical methods to control neural activity in behaving rodents have so far been limited to perturbing all light-sensitive neurons in a large volume. Here we demonstrate an all-optical method for precise spatial control and recording o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurophotonics
دوره 2 2 شماره
صفحات -
تاریخ انتشار 2015